Modal Definability in Enriched Languages
نویسنده
چکیده
The paper deals with polymodal languages combined with standard semantics defined by means of some conditions on the frames. So a notion of "polymodal base" arises which provides various enrichments of the classical modal language. One of these enrichments, viz. the base £(R,-R), with modalities over a relation and over its complement, is the paper's main paradigm. The modal definability (in the spirit of van Benthem's correspondence theory) of arbitrary and ~-elementary classes of frames in this base and in some of its extensions, e.g., £(R,-R,R-1 ,_R-1), £(R,-R,=I=) etc., is described, and numerous examples of conditions definable there, as well as undefinable ones, are adduced. 8
منابع مشابه
Hybrid Definability in Topological Spaces
We present some results concerning definability of classes of topological spaces in hybrid languages. We use language Lt described in [9] to establish notion of “elementarity” for classes of topological spaces. We use it to prove the analogue of Goldblatt-Thomason theorem in topological spaces for hybrid languages H(E) and H(@). We also prove a theorem that allows to reformulate definability re...
متن کاملModal languages for topology: Expressivity and definability
In this paper we study the expressive power and definability for (extended) modal languages interpreted on topological spaces. We provide topological analogues of the van Benthem characterization theorem and the Goldblatt-Thomason definability theorem in terms of the well established first-order topological language Lt.
متن کاملModal Definability over a Class of Structures with Two Equivalence Relations
More than 40 years the correspondence between modal logic and first-order logic, when they are interpreted in relational structures, is on the main stream of the investigations of many modal logicians. The most interesting in this direction is a series of results on modal and first-order definability proved by Chagrova in the 1990s. In particular, from them it follows the undecidability of both...
متن کاملExistential definability of modal frame classes
A class of Kripke frames is called modally definable if there is a set of modal formulas such that the class consists exactly of frames on which every formula from that set is valid, i. e. globally true under any valuation. Here, existential definability of Kripke frame classes is defined analogously, by demanding that each formula from a defining set is satisfiable under any valuation. This is...
متن کاملSahlqvist Formulas in Hybrid Polyadic Modal Logics
Building on a new approach to polyadic modal languages and Sahlqvist formulas introduced in [10] we define Sahlqvist formulas in hybrid polyadic modal languages containing nominals and universal modality or satisfaction operators. Particularly interesting is the case of reversive polyadic languages, closed under all ‘inverses’ of polyadic modalities because the minimal valuations arising in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Notre Dame Journal of Formal Logic
دوره 31 شماره
صفحات -
تاریخ انتشار 1990